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Abstract

Interference, the dependency of an individual’s potential outcome on the exposure of other 

individuals, is a common occurrence in medicine and public health. Recently, targeted maximum 

likelihood estimation (TMLE) has been extended to settings of interference, including in the 

context of estimation of the mean of an outcome under a specified distribution of exposure, 

referred to as a policy. This paper summarizes how TMLE for independent data is extended 

to general interference (network-TMLE). An extensive simulation study is presented of network-

TMLE, consisting of four data generating mechanisms (unit-treatment effect only, spillover effects 

only, unit-treatment and spillover effects, infection transmission) in networks of varying structures. 

Simulations show that network-TMLE performs well across scenarios with interference, but issues 

manifest when policies are not well-supported by the observed data, potentially leading to poor 

confidence interval coverage. Guidance for practical application, freely available software, and 

areas of future work are provided.
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1. Introduction

Causal effect estimation often relies on the assumption of no interference, such that 

an individual’s potential outcomes are independent of all other individuals’ exposure.1–3 

However, interference is common across many areas of medicine and public health, most 
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notably in infectious disease and medical social sciences. Examples include interference 

between injection drug users at risk of HIV,4,5 students within the same school,6 and 

individuals connected within social networks.7 The ongoing global SARS-CoV-2 pandemic 

has brought further attention to interference; evaluation of physical distancing and shelter-

in-place policies have highlighted how such policies, or lack thereof, can impact other 

nearby geographic regions.8,9 In addition to infectious disease, interference occurs across 

substantive areas, with examples including transmission of opioid use within households in 

pharmacoepidemiology,10 passive tobacco smoke exposure in cancer epidemiology,11,12 and 

behaviors among children within classrooms in developmental psychology.13

When interference is present, multiple estimands may be considered.1,14 One estimand of 

public health importance is the mean of an outcome under a specific policy. For example, 

what would the three-month risk of influenza have been if 60% of the population had been 

randomly selected to receive an influenza vaccine? To estimate this quantity or other related 

estimands, methods allowing for interference have been developed for two broad settings: 

partial interference and general interference. The partial interference assumption stipulates 

interference occurs within but not between groups of individuals,1,15 which allows for the 

application of standard statistical theory.16–19 While the partial interference assumption 

is sometimes reasonable, interference patterns do not always allow the separation of 

individuals into independent groups. General interference allows, in principle, for any two 

units in a population to affect each other. Methods for general interference may further be 

delineated by whether the exposure is randomized. In randomized experiments, methods 

can leverage the random assignment as the basis of inference.20,21 In the observational 

setting, inference is more challenging because of the potential for confounding and 

lack of independent replicates. Extensions of targeted maximum likelihood estimation 

for independent data (IID-TMLE) have recently been developed to allow for general 

interference in observational studies.22–24

In this paper, we present simulation studies of TMLE for general interference (network-

TMLE) in observational settings. While simulations have been conducted to evaluate 

the finite sample performance of network-TMLE,23,24 previous empirical studies have 

been limited to relatively simple random networks. In practice, networks often exhibit 

more complex properties,25–27 limiting the utility of previous simulation studies to guide 

application. Additionally, previous simulations have explored only a narrow set of data 

generating mechanisms and model specifications. To address these gaps, we conducted 

simulations for the estimation of the mean potential outcome under varied data generating 

mechanisms with a wider variety of networks, including an observed network of face-to-face 

contacts among university students, and various model specifications. Two policies were 

assessed: setting all individuals to some constant probability of exposure and shifting the 

probability of exposure by a constant.

The outline of the remainder of this paper is as follows. Section 2 reviews IID-TMLE 

in the context of stochastic policies. Network-TMLE for stochastic policies is described 

in Section 3. The simulation study design and results are presented in Sections 4 and 5, 

respectively. Section 6 concludes with a discussion and areas of future work. A freely 

available implementation of network-TMLE is provided in Python.
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2. Targeted Maximum Likelihood Estimation

The TMLE of average causal effects is a doubly-robust substitution estimator that 

incorporates an outcome model and a propensity score (or exposure) model through a 

targeting step.28,29 These models are often referred to as nuisance models since they are 

not of direct interest. The double-robustness property means that if one nuisance model is 

correctly specified, then the estimator will be statistically consistent. Under the assumption 

that both nuisance models are correctly specified, TMLE has the advantage of retaining 

root-n convergence rates when paired with data-adaptive (machine learning) estimators 

for the nuisance models that have at least quarter-root-n convergence.28,30,31 In the 

absence of interference, TMLE methods have been developed for average causal effects,28 

causal effects under different longitudinal treatment plans,32 and stochastic policies.33 The 

following is a brief review of IID-TMLE for stochastic policies.

2.1 Estimands and Assumptions

Consider drawing inference about the effect of a binary exposure on either a A binary or 

continuous outcome Y in an observational study. For individual i = 1,…,n, let Wi indicate 

a vector of observed baseline covariate(s), Ai the observed exposure, and Yi the observed 

outcome. Assume (Wi, Ai, Yi) for i = 1,…,n are independent and identically distributed 

(IID) and there is no interference. Let Yi(a) indicate the potential outcome for individual 

i had, possibly counter to fact, their exposure been a ∈ A = 0, 1 . The goal is to draw 

inference about the mean outcome under a policy, denoted in general by ω, which alters or 

shifts the distribution of A. For example, the target estimand might be a deterministic policy 

where everyone is exposed. Denote the conditional distribution of A given W under policy 

ω by Pr * (A = a│W). For the aforementioned deterministic policy, Pr * (A = 1│W) = 

1. Stochastic policies may also be of interest where 0 < Pr * (A = 1│W) < 1. The target 

estimand is the average outcome under policy ω, which may be defined as the population 

mean:

ψp = E ∑
a ∈ A

Y (a)Pr* (A = a ∣ W ) (1)

the sample mean:

ψs = 1
n ∑

i = 1

n
∑

a ∈ A
Y i(a)Pr* Ai = a W i (2)

or the W-conditional mean:

ψc = 1
n ∑

i = 1

n
E ∑

a ∈ A
Y i(a)Pr* Ai = a ∣ W i W i (3)

For the deterministic policy of everyone exposed, equations 1–3 reduce to E[Y(a = 1)], 
1
n ∑i = 1

n Y i(a = 1), and 1
n ∑i = 1

n E Y i(a = 1) ∣ W i , respectively. The population mean is of 

greatest relevance when units are randomly sampled from an infinite target population, in 
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which case ψp is the average outcome in the target population if policy ω were adopted. 

However, units may not always be drawn from a clearly defined target population, in which 

case the sample mean may be of interest instead. The sample mean estimand is defined only 

in terms of the finite population of n units observed, with the covariates Wi and potential 

outcomes Yi(a) viewed as fixed features of the finite population. Finally, a third possible 

estimand is the W-conditional mean, ψc, which corresponds to the mean under the policy ω 
treating only Wi as fixed for the population of n units. For large n, the empirical distribution 

of W should closely approximate the distribution of W, such that the population mean and 

the W-conditional mean should be similar. In general, the target estimand is denoted by ψ.

To express the estimand as a function of the observed data, identification assumptions are 

necessary. The following sufficient identification assumptions are used:

1. If Ai = a then Yi = Yi(a)

2. Y(a) ⊥ A|W for all a ∈ A

3. If Pr * (A = a│W) > 0then Pr (A = a|W) > 0, for all a ∈ A

where assumption 1 is causal consistency,34 2 is conditional exchangeability,35 and 3 is the 

positivity assumption for stochastic policies.33

2.2 Estimation

IID-TMLE can be divided into five steps: outcome model estimation, weight estimation, 

targeting, estimation of ψ, and inference. The steps for point estimation of the mean are the 

same for ψp, ψs, and ψc, with differences occurring in variance estimation.36 Therefore, we 

only distinguish between the estimands during estimation of the variance. In the case of a 

continuous Y, the observed values of Y are first rescaled to lie in (0,1), which is necessary 

for the targeting step.

IID-TMLE begins with the estimation of an outcome model for E[Yi│Ai,Wi], using either 

a parametric model or machine learning. Predicted values from the outcome model (Y i)
are then generated using the estimated model. Next an exposure model for Pr (Ai│Wi) is 

estimated with either a parametric model or machine learning, and the following weight is 

computed

Pr * Ai W i
Pr Ai W i

where the denominator is computed based on the estimated exposure model and the 

numerator (the policy of interest) is assumed to be known. Next the logistic regression 

model

logit Pr Yi = 1 = η0 + logit(Y i)

is fit using weighted maximum likelihood, with the previously estimated weights. In the case 

of continuous Yi, Pr (Yi = 1) is replaced with the rescaled Yi. This targeting step solves 
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the efficient score equation in a single step,37 without introducing additional parametric 

modeling assumptions. The estimated intercept, η0, can be thought of as a correction term 

for the outcome predictions. When Y i is close to the observed outcomes, then η0 will be near 

zero. When the outcome model is incorrectly specified and the exposure model is correct, η0
shifts the values of logit(Y i). Alternatively, regression using the so-called ‘clever covariate’ 

could be considered.38 While the clever covariate and weighted targeting approaches are 

asymptotically equivalent, weighted targeting may have better finite sample performance 

due to reduced sensitivity to stochastic positivity violations.39

To estimate ψ for a deterministic policy, the following procedure is used. The exposure 

under ω, denoted by Ai*, and the estimated outcome model are used to impute the outcomes 

under ω, denoted by Y i*. Next, the targeted predictions are computed via

Y i* = expit η0 + logit Y i*

and ψ is estimated as the mean of the targeted predictions,

ψ = 1
n ∑

i = 1

n
Y i*

For stochastic policies, the estimation procedure above requires modification. Because the 

distribution of A * is no longer degenerate under a stochastic policy, the following Monte 

Carlo approach is used. For k = 1,…,m sample Aik*  from Bernoulli (Pr * (Ai = 1│Wi)). 

For each Aik* , compute the imputed outcome and targeted prediction for individual i, say Y ik*

and Y ik* , as in the deterministic policy estimation procedure above. Then Y i* is calculated by 

Y i* = ∑k = 1
m Y ik* /m and the estimator for ψ is the mean of the targeted predictions as before.

Lastly, (1 − α) confidence intervals (CI) can be constructed by ψ ± z1 − α/2 σ2/n 0.5
, where 

z1 − α/2 denotes the 1 − α/2 quantile of a standard normal distribution and σ2 is an estimand-

specific variance estimator. For the population mean ψp the variance is estimated by33

σp2 = 1
n ∑

i = 1

n Pr* Ai W i
Pr Ai W i

Yi − Y i + Y i* − ψ
2

and for the W-conditional mean ψc the variance is estimated by36

σc2 = 1
n ∑

i = 1

n Pr* Ai W i
Pr Ai W i

(Yi − Y i)
2

While the sample mean variance is not identified, the asymptotic variance of the conditional 

mean is always greater than or equal to the sample mean asymptotic variance.36 Therefore, 
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the sample mean variance may be conservatively estimated by the conditional sample mean 

variance estimator.

3. Targeted Maximum Likelihood Estimation with Dependent Data

In the presence of interference, the potential outcomes depend on both an individual’s 

exposure and the exposure of others in the population. Consider the setting where 

individuals are connected via a network of edges (e.g., an edge may indicate two individuals 

are friends within a social network, live within a certain distance of each other, or had 

a face-to-face conversation in the past week). Suppose the network structure is static 

(i.e., fixed over time) and can be summarized by an n × n adjacency matrix G. Let Gij
denote the (i,j) entry of G, where Gij = 1 if an edge exists between i and j. Assume no 

interference between individuals i and j if Gij = 0. Since interference is a relation between 

individuals, by definition Gii = 0 ∀ i ∈ n. Throughout, individual i’s ‘immediate contacts’ 

refers to individuals that have an edge with i.

From G and the covariates, various summary measures can be calculated. The total 

number of immediate contacts for individual i (also referred to as degree) is defined 

as Fi = ∑j = 1
n Gij. The exposure status for i’s immediate contacts can be expressed by 

different summary measures, which are functions of (A1,A2,…,An) and G, and in general is 

denoted by Ai
s with possible realizations ais ∈ As. For example, Ai

s = ∑j = 1
n I Aj = 1 Gij is 

the number of individual i’s immediate contacts with A = 1.

3.1 Estimands and Assumptions

In the presence of interference, the potential outcomes for individual i can be denoted 

by Yi(ai,a−i), where a−i indicates the exposure for all individuals excluding i. Assume 

an exposure mapping such that only the summary measure of an individual’s immediate 

contacts’ exposures is necessary to define all of an individual’s potential outcomes (referred 

to as weak dependence hereafter),20 such that the potential outcomes may be denoted by 

Y i ai, ais , with a ∈ A = 0, 1  and as ∈ As. The target estimand is the average outcome under 

policy ω for the sample, which may be either the network mean:

ψp = E 1
n ∑

i = 1

n
∑

a ∈ A, as ∈ As
Y i a, as Pr* Ai = a, Ai

s = as W i, W i
s

(4)

or the W-conditional mean:

ψc = 1
n ∑

i = 1

n
E ∑

a ∈ A, as ∈ As
Y i a, as Pr* Ai = a, Ai

s = as W i, W i
s ∣ W (5)

where W i
s denotes a vector of summary measures for unit i’s immediate contacts’ baseline 

covariates and W = (W1,W2, …,Wn).24 Note that where there is no interference and the units 

are IID, equation 4 reduces to equation 1. Thus, equation 4 can be viewed as a generalization 
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of the population mean allowing for network dependence. Here, a superpopulation of 

networks each consisting of n units with the same structure can be envisioned, of which 

only a single observation, the observed network, is available. Therefore, ψp can be 

interpreted as the expected mean outcome for a network of n units under the policy ω. 

The W-conditional mean similarly envisions a superpopulation of networks all under ω but 

now the superpopulation is composed of both the network with the same structure and same 

values of W among the n units. In the IID setting, equation 5 reduces to equation 3. In 

general, the target estimand is denoted by ψ.

The following assumptions allow for ψ to be identified:

1. If Ai = a, Ai
s = as then Yi = Yi(a,as)

2. Y(a, as) ⊥ A, As|W,Ws, for all a ∈ A, as ∈ As

3. If Pr * (A = a,As = as│W,Ws) > 0then Pr (A = a,As = as│W,Ws) > 0, for all 

a ∈ A, as ∈ As

where assumption 1 is causal consistency, 2 is conditional exchangeability, and 3 is 

positivity assumption for stochastic policies. In practice, choosing the set of covariates W 
and Ws such that the conditional exchangeability assumption is plausible may be informed 

by subject matter knowledge. In many settings, the degree of units, F, might be included 

among the covariates composing the vector W, since F may affect As and may also affect the 

outcome of interest, as individuals who have many contacts may be different from those who 

have fewer contacts. Accounting for degree of units is analogous to methods for clustered 

data which allow for informative cluster sizes,40 i.e., associations between the outcome and 

the cluster size which exist even after conditioning on other baseline covariates.

3.2 Network-TMLE

Network-TMLE extends the TMLE framework to dependent data by allowing Ai to depend 

on Wi and W i
s, and Yi to depend on Ai, Ai

s, Wi, and W i
s. Similar to IID-TMLE, network-

TMLE is doubly robust and is divided into five steps: estimate the outcome model, estimate 

the weights, targeting, estimation of ψ, and inference. As before, point estimation for ψp 

and ψc remains the same, with differences occurring in estimation of the variance.

Step 1) Estimate the outcome model—A model for E Y i ∣ Ai, Ai
s, W i, W i

s  can be 

estimated by handling each observation as if it were IID (see Section 4 of van der Laan22). 

For example, ordinary least squares could be used to estimate the parameters of the model

E Yi ∣ Ai, Ais, W i, W is; β = β0 + β1Ai + β2Ais + β3W i + β4W is

After estimating the model parameters, predicted outcomes under the observed Ai and Ai
s for 

each unit are calculated, indicated by Y i.

Step 2) Estimate the weights—The weights can be expressed as
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π* W i, W is; γ*, δ*

π W i, W is; γ, δ
=

Pr* Ai W i, W is; γ* Pr* Ais Ai, W i, W is; δ*

Pr Ai W i, W is; γ Pr Ais Ai, W i, W is; δ

where γ, δ, γ *, and δ * denote the parameters for the models for Pr Ai W i, W i
s , 

Pr Ai
s Ai, W i, W i

s , Pr* Ai W i, W i
s , and Pr* Ai

s Ai, W i, W i
s , respectively. The model for 

Pr Ai W i, W i
s  can be estimated with a logistic regression model treating observations as 

IID. Different models may be assumed for estimation of Pr Ai
s Ai, W i, W i

s . For example, if 

Ai
s is a binary variable indicating whether at least one of individual i’s immediate contacts 

is exposed, then logistic regression might be used. If Ai
s is instead a count variable (e.g., 

the number of immediate contacts exposed), then Poisson or negative binomial regression 

models might be assumed. For more general A and As, estimation of the weights can be 

done using generalized propensity functions.41

Estimation of the numerator of the weights can be accomplished using a simulation 

approach as follows. Here, only policies where Ai and Aj are independent conditional on W 
for all i ≠ j are considered, since it is often easier to specify policies that assign exposures to 

each individual, Pr * (A = a│W,Ws), as opposed to specifying a policy in terms of both an 

individual’s exposure and their contacts summary measure, Pr * (A = a,As = as│W,Ws).24 

The first step to the simulation approach entails generating m copies of the data set, indexed 

by k = 1,…,m. Next, the assigned exposure under the i policy for individual in copy k, Aik* , 

is sampled from Bernoulli Pr* Ai = 1 ∣ W i, W i
s . Then Aik*  and G are used to calculate the 

new exposure summary measure, Aik* s, under the policy. The parameters, γ * and δ *, are 

then estimated using all m copies of the data simultaneously. Finally, the numerator of the 

weights, π* W i, W i
s; γ*, δ* , is estimated by using the estimated parameters γ*, δ* and the 

observed values of Ai, Ai
s, Wi and W i

s.

Step 3) Targeting—To target, the following logistic regression model is fit using weighted 

maximum likelihood,

logit Pr Yi = 1 = η0 + logit(Y i)

where the weights are those calculated in step 2. As before, Pr (Yi = 1) is replaced 

with the rescaled Yi in the case of a continuous outcome. As with IID-TMLE, the 

targeting step solves the efficient score equation. Similarly, regression with a clever 

covariate could be used instead, with these approaches being asymptotically equivalent.22 

However, the weighted targeting approach may have better finite sample performance and 

be less computationally intensive in the network dependence setting compared to the clever 

covariate approach.23
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Step 4) Estimation of ψ—As in the IID setting, stochastic policies are evaluated using a 

Monte Carlo approach. First, m copies of the data set, indexed by k = 1,…,m, are generated. 

Then Aik*  is sampled from Bernoulli Pr* Ai = 1 W i, W i
s  and used to calculate the summary 

measures for Aik* s. To reduce computational burden, Aik*  and Aik
s *  generated in step 2 can 

be reused here. For each Aik*  and Aik* s, the imputed outcome, Y ik* , is computed using the 

previously estimated outcome model. The targeted prediction, Y ik* , is then computed by

Y ik* = expit η0 + logit Y ik*

The mean of the targeted predictions, ψk = ∑i = 1
n Y ik* /n is calculated for each k. The 

estimator for ψ is the mean of the m estimates, i.e.,ψ = ∑k = 1
m ψk/m.

Step 5) Inference for ψ—Estimating the variance of the network mean estimator is 

challenging. Closed-form and bootstrap variance estimators have been proposed, 24 but these 

variance estimators require either that W1,…,Wn are IID or that the distribution of W can 

be correctly modeled.24 In settings where network interference may be present, the IID 

assumption will be unrealistic and correctly modeling the distribution of W may be difficult 

due to possible complicated network dependencies between individuals. Alternatively, an 

estimator of an approximate upper bound on the variance of the network mean has been 

proposed.23 However, this estimator can be uninformative under some skewed degree 

distributions, which commonly occur in many social networks.42

Due to the overly restrictive conditions on the variance estimators for the network mean, the 

W-conditional mean may be the preferred estimand. Specifically, the variance estimator for 

the W-conditional mean does not require assumptions regarding the distribution of W. For 

the W-conditional mean, the variance can be estimated by23

σc1
2 = 1

n ∑
i = 1

n π* W i, W is; γ*, δ*

π W i, W is; γ , δ
Yi − Y i

2

with (1 − α) CI constructed by ψc ± z1 − α/2 σc12/n 0.5. This variance estimator assumes 

that dependence between observations is solely due to measured covariates of immediate 

contacts, sometimes referred to as direct transmission.24 However, latent dependence, where 

individuals close in the network are more likely to share unmeasured covariates compared 

to individuals far away, is likely in practice. Therefore, we also considered the following 

variance estimator,24 which allows for latent dependence limited up to second-order contacts 

(immediate contacts of i’s immediate contacts):

σc2
2 = 1

n ∑
i = 1

n
∑

j = 1

n
Gij

π* W i, W is; γ*, δ*

π W i, W is; γ , δ
Yi − Y i ×

π* W j, W js; γ*, δ*

π W j, W js; γ , δ
Y j − Y j
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where Gij = Gij for i ≠ j and Gii = 1.

4. Simulation Study Design

Simulations were conducted to assess the performance of the network-TMLE methods 

described in the previous section across varying networks and data generating 

mechanisms. All simulations were repeated 3000 times. We considered two different 

policy types. For the first policy, all individuals in the network were assigned 

the same probability of exposure,Pr* Ai = 1 ∣ W i, W i
s = Pr* Ai = 1 = p. For the second 

policy, each individual’s log-odds of exposure was shifted by a constant value,

Pr* Ai = 1 ∣ W i, W i
s = expit logit Pr Ai = 1 ∣ W i, W i

s + q . Shifts in the log-odds of exposure 

were used to ensure all probabilities under the policy remained between (0, 1). The true 

values of the W-conditional mean for each policy were obtained empirically by taking the 

mean of ψ from 10,000 different data sets under the corresponding policy, with the network 

and W held fixed across data sets.

4.1 Networks

Seven different networks were used: uniform random graphs (n = 500, n = 1000, n = 

2000), modified clustered power-law random graphs (n = 500, n = 1000, n = 2000), and 

the eX-FLU network of self-reported contacts among undergraduate students (Appendix 

Figure B.1).43 The uniform random graphs followed uniform degree distributions with 

minimum degree 1 and maximum degree 6. The modified clustered power-law random 

graphs consisted of separately generated clustered power-law random subgraphs, with 

edges randomly generated between the random subgraphs. Each of the clustered power-law 

subgraphs was separately generated from a Barabasi-Albert random graph model with a 

fixed probability for closing triads between nodes.44 For each node, three connections 

were generated and the probability of triad closure was set to 0.75. The advantage of this 

approach is that the random graph takes on common characteristics of empirical networks, 

including a power-law degree distribution, a high clustering coefficient, and an underlying 

community structure. Lastly, the eX-FLU network was based on data from the eX-FLU 

cluster-randomized trial, a study to assess the efficacy of three-day self-isolation when 

symptomatic of respiratory illness on subsequent respiratory infection among university 

students.43 Over the ten-week study period, enrolled students reported face-to-face contacts 

each week. From the ten weeks of self-reported contacts, we generated a single static 

network and selected the largest connected component. Summary statistics for the networks 

are provided in Appendix Table B.1.

Different nuisance model specifications of network-TMLE were evaluated for each scenario: 

both nuisance models were correctly specified, misspecification of the outcome model, and 

misspecification of the exposure model (model specifications are provided in Appendix B). 

Model misspecification was induced by specifying the wrong form for Ws, the summary 

measure(s) of covariates, along with excluding a covariate from Ws. As the correct 

specification of nuisance models will often be unknown in practice, we further evaluated 

a more flexible specification of nuisance models. This approach consisted of the following 

procedure. For a categorical covariate, Vs, included in Ws, the corresponding summary 
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measure was defined as V i
s(v) = ∑j = 1

n I V j = v Gij for all ν ∈ V besides a chosen referent. 

For example, suppose Vs is the only measure included in Ws and the possible values for 

Vi were {0,1,2}. Therefore, the summary measures for covariates would be Ws = (Vs(ν 
= 1),Vs(ν = 2)). Since (ν) tended to be right-skewed for networks with skewed degree 

distributions and to reduce the dimensionality of the nuisance models, Vs(ν) was further 

grouped into categories via a generalization of histogram binning.45 This approach kept 

narrower bins at lower values of Vs(ν) with wider bins at the right tail. Each bin was 

included in the regression model as an indicator term (e.g., if Vs(ν) was binned into 5 

categories, 4 indicator variables were included in the nuisance models). While continuous V 
could also be discretized and modeled using the previous approach, the following summary 

measure was used instead V i
s = ∑j = 1

n V i − V j Gij/∑j = 1
n Gij. Outcome nuisance models 

for the flexible specification were estimated using L2-penalized regression.

Performance of network-TMLE may be improved when restricting inference to nodes below 

a pre-specified degree for skewed degree distributions.24 Therefore, restricting inference 

by degree was further compared for the clustered power-law random graphs and eX-FLU 

network. Nodes with degrees above a pre-defined maximum had their value for held as fixed 

and were considered as background A features. For the clustered power-law random graph 

(n = 500), nodes with a degree above 18 were considered as features of the background 

(2%). Similarly, nodes with a degree greater than 22 were considered as background features 

for the eX-FLU network (5%) and the remaining clustered power-law random graphs (n = 

1000: 2%, n = 2000: 2%).

4.2 Data generating mechanisms

Four data generating mechanisms inspired by real-world scenarios were considered. Each 

data generating mechanism was selected to feature different possible exposure effects, 

including individual-specific (i.e., unit-treatment) effects and spillover effects from contacts. 

Below is a brief description of each of the data generating mechanisms with further details 

provided in Appendix B.

4.2.1 Statin and Cardiovascular Disease—To simulate a no interference setting, 

a data generating mechanism based on a hypothetical study on statin initiation and 

subsequent atherosclerotic cardiovascular disease (ASCVD) was created. Statins are 

cholesterol-lowering drugs that have been shown to reduce cardiovascular disease risk 

by reducing cholesterol synthesis.46,47 The mechanism of action may reasonably allow 

researchers to believe that whether individual i’s friends take a statin has no influence 

on individual i’s risk of ASCVD. Therefore, ASCVD risk was independent of immediate 

contacts in our simulation. Confounders were based on the 2018 primary prevention 

guidelines for the management of blood cholesterol,48 and included age, low-density 

lipoprotein levels, and ASCVD risk score.

Let Xi indicate age, Li indicate log-transformed low-density lipoprotein, Ri indicate risk 

score, and Wi = (Xi,Li,Ri). The conditional probability of taking a statin was specified by:
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logit Pr Ai = 1 ∣ W i = − 5.3 + 0.2 Li + 0.15 Xi − 30 + 0.4 I 0.05 ≤ Ri < 0.075
+ 0.9 I 0.075 ≤ Ri < 0.2 + 1.5 I Ri ≥ 0.2

The conditional probability of ASCVD was specified by:

logit Pr Yi = 1 ∣ Ai, W i = − 5.05 − 0.8Ai + 0.37 Xi − 39.9 + 0.75Ri + 0.75Li

4.2.2 Naloxone and Opioid Overdose—For spillover effect only, a data generating 

mechanism based on the effect of naloxone on subsequent opioid overdose deaths was 

created. Opioid overdose deaths have dramatically increased in recent years.49,50 Naloxone 

has been used as an emergency intervention to rapidly reverse opioid overdoses by 

blocking opioid receptors,51 and has been made increasingly available to the general 

population to prevent overdose deaths.52,53 Nasal spray formulations rely on another 

person for administration, with self-administration having occurred only in rare cases.54 

Therefore, the prevention of opioid overdose deaths with naloxone is an example where 

the protective effect may operate solely via spillover effects. Confounders included gender, 

recent overdose, and recent release from prison, which have been observed as predictors of 

opioid overdose in previous studies.55,56 In the context of this mechanism, the interference 

pattern could be thought of as a co-injection network.

Let Si indicate gender, Oi indicate recent overdose, Pi indicate recent release from prison, 

and Wi = (Si,Oi,Pi,Fi). The conditional probability of naloxone was generated according to:

logit Pr Ai = 1 ∣ W i, W is = − 0.5 − 1.5 Pi + 1.5 PiSi

+ 0.3 ∑
j = 1

n
I Oj = 1 Gij + 0.5

∑j = 1
n I Sj = 1 Gij

∑j = 1
n Gij

+ 0.05Fi

The conditional probability of death from opioid overdose was specified by:

logit Pr Yi = 1 ∣ Ais, W i, W is = − 0.4 − 0.2 ∑
j = 1

n
I Aj = 1 Gij + 1.7 Pi − 1.1 Si

+ 0.6 ∑
j = 1

n
I Oj = 1 Gij − 1.5

∑j = 1
n I Sj = 1 Gij

∑j = 1
n Gij

− 0.4Fi

4.2.3 Comprehensive Dietary Intervention and Body Mass Index—For 

simultaneous unit-treatment and spillover effects, a data generating mechanism based on 

a comprehensive dietary intervention on body mass index (BMI) was created. Research 

has found BMI to be socially clustered,57,58 with the transmission of obesity theorized to 

result from social pressures or the shared environments of social contacts.58 Comprehensive 

dietary interventions that limit caloric intake and increase the quality of food may reduce 

BMI.59 Our simulation focused on a theoretical dietary intervention that impacts an 
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individual’s BMI as well as their immediate friends’ BMI. Confounders included baseline 

BMI, gender, and baseline exercise. In this context, the interference pattern can be viewed as 

a network of friendships.

Let Si indicate gender, Bi indicate baseline BMI, Ei indicate exercise at baseline, Ui 

indicate the unobserved variable (proximity to work), and Wi = (Si,Bi,Ei,Fi). The conditional 

probability of starting the proposed diet at baseline was specified by:

logit Pr Ai = 1 ∣ W i, W is = − 1.5 + 0.05 Bi − 30 + 2.0SiEi + 1.0
∑j = 1

n I Ej = 1 Gij
∑j = 1

n Gij

+ 1.0
∑j = 1

n I Sj = 1 Gij
∑j = 1

n Gij
+ 0.05Fi

BMI at follow-up was generated by:

Yi = 3.9 + Bi − 3Ai − 2 I 3 < ∑
j = 1

n
I Aj = 1 Gij − 2Ui + 2Si − 2Ei − 1.0 ∑

j = 1

n
I Ej = 1 Gij

− 0.75 ∑
j = 1

n
I Sj = 1 Gij +

∑j = 1
n Gij Bj − Bi

∑j = 1
n Gij

+ 0.2Fi + 3 I 0.4 <
∑j = 1

n GijUi
∑j = 1

n Gij
+ ϵi

where ϵi ~ Normal(0, 1). Here, Ui is related to Yi and not Ai, and is unobserved (i.e., not 

included in the network-TMLE outcome nuisance model). Additionally, Bi was made to 

be assortative in the underlying network. Therefore, this data generating mechanism was 

expected to exhibit latent variable dependence.

4.2.4 Infectious Disease Transmission—The fourth simulation mechanism entailed 

a Susceptible-Infected-Recovered (SIR) model of human-to-human transmission of an 

infectious agent. The hypothetical vaccine followed a ‘leaky’ model, such that the vaccine 

reduced the probability of infection given a single exposure to an infectious agent.60 The 

spillover effect of the vaccine was composed of contagion (vaccinated individuals were 

less likely to become infected and thus less likely to transmit) and infectiousness effects 

(vaccinated-but-infected individuals had reduced probability of transmitting the disease).61

The stochastic SIR model was implemented as follows. Of n units in a network, 1% were 

selected to be initially infected. Actively infectious individuals were able to infect their 

immediate contacts based on a probability of transmission conditional on characteristics of 

the infected and uninfected individuals. Infected individuals remained infectious for a period 

of five discrete time-steps after becoming infected and recovered after the infectious period 

(no longer infectious nor capable of being infected by contacts). All transmission events 

occurred over a period of ten time-steps. Unlike the previous data generating mechanisms, 

the infection transmission mechanism does not necessarily adhere to the weak dependence 

assumption. By chance, an infection could spread up to a maximum of 10 contacts away 

from the source.
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Let Vi indicate asthma, Hi indicate hand hygiene, and Wi = (Vi,Hi,Fi). The probability of 

being vaccinated was specified by:

logit Pr Ai = 1 ∣ W i, W is = − 1.9 + 1.75V i + 1.0Hi + 1.0 ∑
j = 1

n
I Hj = 1 Gij

+ 1.3 ∑
j = 1

n
I V j = 1 Gij − 0.65Fi

and the probability of individual i becoming infected at discrete time-point t (Di,t) by 

individual j was generated by:

logit Pr Di, t = 1 Zj, t = 1, Gij = 1, Ai, Aj, W i = − 2.5 − 1.0Ai − 0.2Aj + 1.0V i − 0.2Hi

where Zj,t = 1 indicates whether j was in the infectious category at time t. For individuals 

with multiple infectious contacts, whether transmission of the infection occurred was 

evaluated for each contact independently. Note this is not the outcome model used in 

network-TMLE. Instead, network-TMLE used the following outcome model:

logit Pr Yi = 1 ∣ Ai, Ais, W i, W is = β0 + β1Ai + β2 ∑
j = 1

n
I Aj = 1 Gij + β3V i

+ β4 ∑
j = 1

n
I V j = 1 Gij + β5Hi

+ β6 ∑
j = 1

n
I Hj = 1 Gij + β7Fi

where Yi is the indicator variable of ever infected by the end of follow-up.

4.3 Performance Metrics

To assess the performance of network-TMLE, the following metrics were used: bias, 

empirical standard error (ESE), and 95% CI coverage. Bias was defined as the mean of 

ψc − ψc for each policy ω. ESE was estimated by the standard deviation of the simulation 

estimates for each policy scenario. CI coverage was calculated as the proportion of 95% 

CIs containing the true mean of the outcome. Tables comparing the correctly specified and 

flexibly specified nuisance models are available in Appendix D.

4.4 Software

All simulations were conducted using Python 3.6.6 with the following libraries: NumPy,62 

SciPy,63 statsmodels,64 patsy,65 and NetworkX.66 Since no current implementation of 

network-TMLE was available in Python, we designed one. MossSpider is freely available 

on the Python Package Index (PyPI) and GitHub (github.com/pzivich/MossSpider). Our 

implementation was supported by replicating the simulations from Sofrygin and van 

der Laan 2017 (Appendix A).23 All simulation code is available at github.com/pzivich/

publications-code.
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5. Simulation Study Results

5.1 Statin and ASCVD

For the hypothetical study of statins the assumption regarding no interference is valid, so 

network-TMLE is not necessary for estimation in this context but is expected to correctly 

estimate the proportion under each policy. When both nuisance models were correctly 

specified, there was little bias for all networks (Figures 1–2, Appendix Figures C.1–C9). For 

the uniform network (n = 500), CI coverage was less than the nominal level for policies 

where substantially more individuals would be exposed relative to the observed data for the 

uniform random graph (Figure 1). On the other hand, CI coverage exceeded the nominal 

level for policies where the probability of exposure was dissimilar to the observed data 

for the restricted-by-degree eX-FLU graph (Figure 2). This over-coverage was in part due 

to confidence intervals that spanned the entire parameter space (0 to 1) (Appendix Table 

D.4). For the unrestricted eX-FLU graph, the conservative coverage remained (Appendix 

Figure C.1), but the ESE was increased. The unrestricted power-law graph (n = 500) 

results were also similar to the unrestricted eX-FLU results (Appendix Figure C.3) but 

restricting by degree for the power-law random graph reduced the extent of the conservative 

coverage (Appendix Figure C.2). CI coverage and the patterns exhibited were similar for 

both variance estimators.

Misspecification of either the exposure or outcome models did not substantially alter 

the performance of network-TMLE. As expected, misspecification of the outcome model 

resulted in an increased ESE compared to both model beings correctly specified or only the 

outcome model being correctly specified. The proposed flexible approach for modeling the 

Ws terms performed adequately, but policies where the probability of exposure was greater 

than 0.5 had the lowest CI coverage of the differing model specifications for the uniform and 

the power-law random graphs (Figure 1, Appendix Figure C.2–C.3). However, CI coverage 

was improved in the eX-FLU network for most policies (Figure 2).

Under increased n for the uniform and power-law random graphs, bias remained negligible, 

and the ESE decreased as n increased (Appendix Figure C.4–C.9, Appendix Tables D.2–D.3, 

Tables D.8–D.12). For the uniform random graph, CI coverage was closer to expected 

levels with the larger n but coverage was still below the nominal level for policies where 

individuals were assigned a high (>0.7) of receiving statins. As n increased for the restricted 

and unrestricted power-law random graph, CI coverage followed a similar pattern to n = 

500, with approximately nominal coverage for most policies when restricting by degree 

and conservative coverage when unrestricted by degree. As before, the flexible modeling 

approach had worse coverage for policies where the probability of exposure was greater than 

0.5.

5.2 Naloxone and Opioid Overdose

For simulations of naloxone and opioid overdose (where there was a spillover effect only), 

network-TMLE had variable performance across the scenarios. For the uniform random 

graph (n = 500), network-TMLE exhibited negligible bias and CI coverage approximating 

the nominal level for policies where the likelihood of exposure was not substantially 
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different from the observed distribution of exposure (Figure 3). However, coverage dropped 

to 75% for policies where nearly everyone was exposed. Performance in terms of bias 

and CI coverage was similar across the varying model specifications. For n = 1000, the 

bias remained negligible, and CI coverage slightly increased for policies where nearly 

everyone was exposed but remained below nominal levels (Appendix Figure C.13, Appendix 

Table D.13). Similar patterns occurred for n = 2000 (Appendix Figure C.16, Appendix 

Table D.14). Again, the variations of the nuisance models had similar patterns in terms of 

performance.

For the eX-FLU network restricted by degree, network-TMLE had minimal bias across 

policies (Figure 4). Similar to the uniform random graph, CI coverage dropped for policies 

where most individuals were exposed. Furthermore, performance was poor when only the 

exposure model was correctly specified, with some bias and CI coverage below nominal 

levels for all policies. The flexible specification of Ws was improved over scenario where 

only the exposure model was correctly specified. Performance in terms of CI coverage was 

worse when the eX-FLU network was not restricted by degree, mainly for policies were 

nearly everyone would have been exposed (Appendix Figure C.10, Appendix Tables D.15–

D.16).

Performance of network-TMLE for the clustered power-law random graph (n = 500) was 

comparable to the eX-FLU simulations (Appendix Figure C.11–C.12). As with the eX-FLU 

network, performance was improved when restricting by degree. However, CI coverage 

was nominal for some ω when only the exposure model was correctly specified. For n = 

1000 and n = 2000, patterns of performance were largely the same, but CI coverage did 

not appreciably change for the more extreme policies (Appendix Figure C.14–C.15 Figure 

C.17–C.18, Tables D.19–D.22).

5.3 Comprehensive Dietary Intervention and BMI

For simulations of a comprehensive dietary intervention on BMI with both unit-treatment 

and spillover effects, network-TMLE point estimates exhibited minimal bias and the 

corresponding CI coverage was approximately 95% in most scenarios. For the uniform 

random graph (n = 500), there was little bias, and coverage was near 95% when both models 

were correctly specified (Figure 5). Performance was similar when the exposure model was 

misspecified. When the outcome model was misspecified, the ESE substantially increased, 

and coverage was above 95%. The flexible specification of Ws had similar performance 

to other models but coverage was slightly decreased near the extremes of ω. Results were 

similar for n = 1000 and n = 2000 (Appendix C Figure C.22, Figure C.25, Tables D.23–

D.25).

The overall patterns with the varying model specifications were similar for the eX-FLU 

network when restricted by degree (Figure 6). However, the flexible specification of Ws 

resulted in decreased coverage, particularly for policies where the probability of exposure 

was set to be low. Restricting by degree reduced the ESE, particularly when the outcome 

model was misspecified, but did not substantially alter the CI coverage (Appendix Figure 

C.19, Tables D.26–D.27). However, the unrestricted analyses with the flexible modeling 

approach had increased CI coverage for policies with low probabilities of exposure 
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compared to the restricted flexible models, likely due to the additional observations available 

for estimation.

Network-TMLE’s performance across the power-law random graphs (n = 500, n = 1000, 

n = 2000) generally followed the same patterns as the uniform random graphs. There was 

little bias across the varying model specifications, misspecification of the outcome model 

led to increased ESE and conservative CI coverage, and the flexible specification of Ws 

performed adequately for most policies (Appendix Figure C.23–C.24, Figure C.20–C.21, 

Figure C26–C.27). As with the eX-FLU network, the ESE decreased when restricting by 

degree (Appendix Tables D.28–D.33).

5.4 Vaccine and Infectious Disease Transmission

For the uniform network (n = 500), there was relatively little bias but 95% CI coverage 

based on the direct transmission variance estimator was below 0.80 across all policies and 

model specifications (Figure 7). The 95% CI coverage based on the latent dependence 

variance estimator was improved but was still below 0.95 (Appendix Table D.34). Similar 

patterns occurred for the uniform network with n = 1000 and n = 2000 (Appendix Figure 

C.31, Figure C.34, Table D.35–D.36).

For the eX-FLU network restricted by degree, bias was present for some policies across 

all model specifications (Figure 8). Again, the 95% CI coverage was noticeably different 

between the variance estimators, with the latent dependence variance estimator resulting 

in improved coverage. However, CI coverage remained below 0.95 for all ω. Comparing 

different policy specifications, shifts in the propensity scores had less bias and better 

coverage compared to assigning the same probability of vaccination to all units. When the 

eX-FLU network was not restricted by degree, bias was largely similar, but the distribution 

of estimates was more heavily skewed (Appendix Figure C.28). For the clustered power-

law random graph, similar patterns of bias and CI coverage were observed for n = 

500 (Appendix Figures C.29–30), n = 1000 (Appendix Figures C.32–33), and n = 2000 

(Appendix Figures C.35–36).

6. Discussion

Here, TMLE for IID data with stochastic policies and an extension of TMLE to network-

dependent data were reviewed. The performance of network-TMLE was assessed in a 

variety of different network structures, combinations of unit-treatment and spillover effects, 

and nuisance model specifications. Finally, software implementing network-TMLE in 

Python is made freely available, which may help facilitate wider application.

Network-TMLE inference about the W-conditional mean under different stochastic policies 

performed well in a variety of simulations based on real-world examples. These results 

demonstrate the potential utility of network-TMLE over a range of settings. The 

simulations suggest when employing network-TMLE in practice that networks with a 

skewed distribution should be restricted by degree and nuisance models should be flexibly 

specified. Network-TMLE did not perform well when the weak dependence assumption was 

violated. Performance was also degraded for policies where the probability of exposure was 
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substantially different from the observed proportion exposed due to a lack of support in the 

data. For example, when exposure was uncommon, CI coverage was poor for policies where 

nearly everyone was exposed. In these cases, few individuals with high degree have all their 

immediate contacts exposed. However, the policy of interest has most individuals having 

all their immediate contacts being exposed. Therefore, the parametric nuisance models 

extrapolate from those few individuals to estimate the policy. While these sparsity problems 

are overcome asymptotically, care should be exercised when employing network-TMLE for 

inference about policies ‘far’ from the observed data.

To help identify how well a proposed policy is supported by the observed data, we propose 

the following diagnostic. For the chosen summary measure As, a bar chart or histogram 

of the observed values are plotted stratified by A. For the proposed policy, the new values 

As * are plotted as done for As. Therefore, the observed distribution of As can be visually 

compared to the distribution of exposures under the proposed policy As *. An illustrative 

example of this diagnostic plot for both well supported and poorly supported policies 

is provided in Figure 9. Similarly, restricting inference to individuals below a specified 

degree may reduce bias and improve confidence interval coverage for networks with skewed 

degree distributions. While individuals above the maximum degree are then considered to 

be fixed features of the network and the target parameter has a modified interpretation, 

the improvements may nonetheless be preferred. However, restricting by degree and the 

resulting decrease in observations available to estimate the nuisance models may exacerbate 

finite data issues in some cases.

Limiting inference to policies ‘close’ to the observed data or focusing on policies which 

more modestly perturb the exposure distribution may also be more relevant from a practical 

perspective. In the absence of interference, commonly targeted estimands, like the average 

causal effect, contrast two extreme exposure distributions: everyone exposed versus no 

one exposed.33,67–69 Such extreme counterfactual exposure settings may be unrealistic or 

irrelevant in practice. For instance, when assessing the effect of smoking on some health 

outcome, the counterfactual scenario where all individuals smoke is likely unrealistic. 

Rather, there may be more interest in the effect of policies or interventions which modestly 

decrease the likelihood of smoking. As another example, consider policies to encourage 

influenza vaccination uptake. Previous approaches have resulted in only minor to moderate 

increases in the vaccine receipt.70–73 Therefore, the counterfactual scenario of everyone in 

the population being vaccinated may be of less relevance, in addition to being difficult to 

draw valid inferences about.

In practical application, nuisance models should be flexibly specified. Here, we 

demonstrated one option that binned Ws. To help reduce unnecessary increases in the 

dimensionality of the model, the procedure was further paired with a L2-penalized 

regression model. Overall, the flexible modeling approach performed well over a wide 

range of settings and was comparable in terms of bias and coverage to network-TMLE when 

both nuisance models were correctly specified. As correct model specification is unlikely 

in practice, flexible specification of the nuisance models is recommended. Nonparametric 

or data-adaptive approaches could be utilized; for instance Pr Ai
s ∣ Ai, W i, W i

s  could be 
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estimated with a conditional density super learner.74 Provided the nonparametric estimators 

of the nuisance models converge at a sufficiently fast rate and other conditions hold, the 

network-TMLE estimator will still be consistent and asymptotically normal.24 Additional 

empirical research is needed to study the finite-sample performance of network-TMLE when 

such data-adaptive approaches are used for nuisance model estimation.

In the vaccination and infection mechanism, the infection status of a unit depends on 

units outside of its immediate contacts. This more widespread dependence, a violation of 

weak dependence, likely resulted in the occurrence of some bias, reduced CI coverage, 

and explains the difference observed between the variance estimators. To address weak 

dependence, the extension of network-TMLE for longitudinal data is needed.22 A 

longitudinal extension could instead require that weak dependence holds only within each 

measured time interval,24 as opposed to weak dependence holding over the entire duration 

of follow-up. Furthermore, the longitudinal extension would allow for a summary measure 

of infectious immediate contacts within each time interval to be included in the nuisance 

models.

Future work could consider the following. Our simulation study assessed a flexible approach 

for including summary measure of covariates, Ws, in nuisance models. However, the 

summary measure As was assumed to be known. While reliable background information 

on As may be known in some settings, this will not always be the case. One method 

of avoiding specification of a particular summary measure for As in the exposure model 

is to factor As into b different binary conditional distributions (where b is the maximum 

degree) and estimate these conditional distributions with a series of b logistic models.23 

However, this approach is limited to scenarios where the degree distribution is near 

uniform. Instead, a similar categorization and binning approach could also be applied 

to As,24 which would apply to both nuisance models and allow for non-uniform degree 

distributions. Here, two closed-form variance estimators for the W-conditional mean were 

compared. Other research has proposed bootstrap variance estimators,75,76 with a parametric 

bootstrap estimator for network-TMLE in the context of the network mean outperforming 

the closed-form variance.24 Further comparison of bootstrap variance estimators in terms 

of their assumptions and performance remains of interest. Additional empirical evaluation 

could be conducted of network-TMLE for other estimands such as marginal unit-treatment 

effects (i.e. direct effects).23 Generalization of network-TMLE to other related estimands 

(i.e., spillover effects, total effects) is also of interest. Finally, direct comparisons between 

network-TMLE and auto-g-computation, a recent extension of the parametric g-formula for 

general interference,77 could be undertaken.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Target maximum likelihood estimation for statins and atherosclerotic heart disease, and 

the uniform random graph. Left y-axes and violin plots correspond to bias, defined as 

the estimated conditional sample mean minus the true conditional sample mean. The 

right y-axes and diamonds correspond to 95% confidence interval (CI) coverage The 

red diamond corresponds to the direct-transmission-only variance estimator and the blue 

square corresponds to the latent-variable-dependence variance estimators. The first column 

corresponds to all individuals in the population having the same set probability of statins. 

The second column corresponds to the shift in log-odds of the predicted probability of 

statins for each individual. The proportion of statins in the observed data was 25%. A: 
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Network-TMLE with both nuisance models correctly specified. B: Network-TMLE with the 

exposure model misspecified. C: Network-TMLE with the outcome model misspecified. D: 

Network-TMLE with a flexible specification of W^s.
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Figure 2: 
Target maximum likelihood estimation for statins and atherosclerotic heart disease, and 

the eX-FLU network restricted by degree. The maximum degree for participants was 

restricted to be 22 or less. Left y-axes and violin plots correspond to bias, defined as 

the estimated conditional sample mean minus the true conditional sample mean. The 

right y-axes and diamonds correspond to 95% confidence interval (CI) coverage. The 

red diamond corresponds to the direct-transmission-only variance estimator and the blue 

square corresponds to the latent-variable-dependence variance estimators. The first column 

corresponds to all individuals in the population having the same set probability of statins. 

The second column corresponds to the shift in log-odds of the predicted probability of 
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statins for each individual. The proportion of statins in the observed data was 24%. A: 

Network-TMLE with both nuisance models correctly specified. B: Network-TMLE with the 

exposure model misspecified. C: Network-TMLE with the outcome model misspecified. D: 

Network-TMLE with a flexible specification of W^s.
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Figure 3: 
Target maximum likelihood estimation for naloxone and opioid overdose, and the 

uniform random graph. Left y-axes and violin plots correspond to bias, defined as 

the estimated conditional sample mean minus the true conditional sample mean. The 

right y-axes and diamonds correspond to 95% confidence interval (CI) coverage. The 

red diamond corresponds to the direct-transmission-only variance estimator and the blue 

square corresponds to the latent-variable-dependence variance estimators. The first column 

corresponds to all individuals in the population having the same set probability of naloxone. 

The second column corresponds to the shift in log-odds of the predicted probability of 

naloxone for each individual. The proportion of naloxone in the observed data was 35%. A: 
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Network-TMLE with both nuisance models correctly specified. B: Network-TMLE with the 

exposure model misspecified. C: Network-TMLE with the outcome model misspecified. D: 

Network-TMLE with a flexible specification of W^s.
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Figure 4: 
Target maximum likelihood estimation for naloxone and opioid overdose, and the eX-FLU 

network restricted by degree. The maximum degree for participants was restricted to be 22 

or less. Left y-axes and violin plots correspond to bias, defined as the estimated conditional 

sample mean minus the true conditional sample mean. The right y-axes and diamonds 

correspond to 95% confidence interval (CI) coverage. The red diamond corresponds to the 

direct-transmission-only variance estimator and the blue square corresponds to the latent-

variable-dependence variance estimators. The first column corresponds to all individuals in 

the population having the same set probability of naloxone. The second column corresponds 

to the shift in log-odds of the predicted probability of naloxone for each individual. 
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The proportion of naloxone in the observed data was 34%. A: Network-TMLE with 

both nuisance models correctly specified. B: Network-TMLE with the exposure model 

misspecified. C: Network-TMLE with the outcome model misspecified. D: Network-TMLE 

with a flexible specification of W^s.
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Figure 5: 
Target maximum likelihood estimation for diet and body mass index, and the uniform 

random graph. Left y-axes and violin plots correspond to bias, defined as the estimated 

conditional sample mean minus the true conditional sample mean. The right y-axes 

and diamonds correspond to 95% confidence interval (CI) coverage. The red diamond 

corresponds to the direct-transmission-only variance estimator and the blue square 

corresponds to the latent-variable-dependence variance estimators. The first column 

corresponds to all individuals in the population having the same set probability of diet. The 

second column corresponds to the shift in log-odds of the predicted probability of diet for 

each individual. The proportion on a diet in the observed data was 48%. A: Network-TMLE 
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with both nuisance models correctly specified. B: Network-TMLE with the exposure model 

misspecified. C: Network-TMLE with the outcome model misspecified. D: Network-TMLE 

with a flexible specification of W^s.
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Figure 6: 
Target maximum likelihood estimation for diet and body mass index and the eX-FLU 

network restricted by degree. The maximum degree for participants was restricted to be 22 

or less. Left y-axes and violin plots correspond to bias, defined as the estimated conditional 

sample mean minus the true conditional sample mean. The right y-axes and diamonds 

correspond to 95% confidence interval (CI) coverage. The red diamond corresponds to the 

direct-transmission-only variance estimator and the blue square corresponds to the latent-

variable-dependence variance estimators. The first column corresponds to all individuals in 

the population having the same set probability of diet. The second column corresponds 

to the shift in log-odds of the predicted probability of diet for each individual. The 
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proportion on a diet in the observed data was 52%. A: Network-TMLE with both nuisance 

models correctly specified. B: Network-TMLE with the exposure model misspecified. C: 

Network-TMLE with the outcome model misspecified. D: Network-TMLE with a flexible 

specification of W^s.
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Figure 7: 
Target maximum likelihood estimation for vaccination and infection and the uniform 

random graph. Left y-axes and violin plots correspond to bias, defined as the estimated 

conditional sample mean minus the true conditional sample mean. The right y-axes 

and diamonds correspond to 95% confidence interval (CI) coverage. The red diamond 

corresponds to the direct-transmission-only variance estimator and the blue square 

corresponds to the latent-variable-dependence variance estimators. The first column 

corresponds to all individuals in the population having the same set probability of 

vaccination. The second column corresponds to the shift in log-odds of the predicted 

probability of vaccination for each individual. The proportion vaccinated in the observed 
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data was 30%. A: Network-TMLE with both nuisance models correctly specified. B: 

Network-TMLE with the exposure model misspecified. C: Network-TMLE with the 

outcome model misspecified. D: Network-TMLE with a flexible specification of W^s.
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Figure 8: 
Target maximum likelihood estimation for vaccination and infection, and the eX-FLU 

network restricted by degree. The maximum degree for participants was restricted to be 22 

or less. Left y-axes and violin plots correspond to bias, defined as the estimated conditional 

sample mean minus the true conditional sample mean. The right y-axes and diamonds 

correspond to 95% confidence interval (CI) coverage. The red diamond corresponds to the 

direct-transmission-only variance estimator and the blue square corresponds to the latent-

variable-dependence variance estimators. The first column corresponds to all individuals 

in the population having the same set probability of vaccination. The second column 

corresponds to the shift in log-odds of the predicted probability of vaccination for each 
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individual. The proportion vaccinated in the observed data was 35%. A: Network-TMLE 

with both nuisance models correctly specified. B: Network-TMLE with the exposure model 

misspecified. C: Network-TMLE with the outcome model misspecified. D: Network-TMLE 

with a flexible specification of W^s.
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Figure 9: 
Proposed diagnostic plots for policies for a network. A: observed distribution of Âs by 

individual’s A for 500 individuals. B: distribution of Âs under a well-supported policy. C: 

distribution of Âs under a poorly supported policy. Here, the network has a maximum degree 

of six. Since the policy in C has little-to-no support, estimation of the latter policy should be 

avoided, or recognize that results are highly dependent on extrapolations from the nuisance 

models.
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